Telegram Group & Telegram Channel
Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение



tg-me.com/ds_interview_lib/205
Create:
Last Update:

Объясните, как учится Word2Vec? Какая функция потерь? Что максимизируется?

Word2Vec — это метод обучения векторных представлений слов. Он использует одну из двух архитектур: CBOW (Continuous Bag of Words) или Skip-gram.

▪️CBOW прогнозирует текущее слово на основе контекста (окружающих слов).
▪️Skip-gram наоборот использует текущее слово для предсказания контекста.

В процессе обучения Word2Vec использует нейронную сеть с одним скрытым слоем. Входные данные представляют собой слова в форме «one-hot encoded» векторов. Сеть обучается так, чтобы векторные представления слов в скрытом слое кодировали семантические и синтаксические характеристики слов.

Word2Vec может использовать несколько разных функций потерь, но наиболее распространёнными являются Negative Sampling Loss и Hierarchical Softmax. Цель обучения — максимизировать косинусное сходство между векторами слов, которые встречаются в похожих контекстах, и минимизировать его для слов, которые не встречаются вместе.

#NLP
#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/205

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA